Moyamoya disease in children
Jun-ichi Takanashi *
Department of Pediatrics, Kameda Medical Center, Kamogawa-shi, Japan

Abstract
Moyamoya disease is an uncommon cerebrovascular disease characterized by progressive steno-occlusive changes in the terminal internal carotid arteries (ICA) and their main branches, associated with the development of moyamoya vessels. The incidence of the disease is high in east Asia, especially in Japan and Korea. The familial form accounts for 10–15%. Moyamoya disease has two age distribution peaks at around 5 and 40 years. Most pediatric patients exhibit transient ischemic attacks or infarction. Headache and involuntary movements are serious symptoms associated with pediatric moyamoya disease. MRI and MR angiography (MRA) are useful and non-invasive methods for diagnosing or monitoring moyamoya disease. Cerebral angiography is still the gold standard for a diagnosis, however, it is not mandatory when MRI and MRA show typical findings of moyamoya disease; steno-occlusive changes at the ends of ICA and an abnormal vascular network in the basal ganglia. Other MRI findings have been reported, including T2 shortening in the white matter, the ivy sign on fluid-attenuated inversion recovery (FLAIR) images, and medullary streaks on FLAIR or enhanced T1-weighted images.

Keywords: Moyamoya disease; Moyamoya syndrome; MRI; MR angiography

1. Introduction
Moyamoya disease is a cerebrovascular disease characterized by slowly progressive steno-occlusive changes in the terminal portions of the bilateral internal carotid arteries (ICA) and their main branches, which results in the formation of a fine vascular network at the base of the brain (moyamoya vessels) to compensate for the steno-occlusion [1]. The hazy appearance of these hypertrophied collaterals on angiography resembles a puff of smoke (moyamoya in Japanese); thus, Suzuki and Takaku named this novel disorder “moyamoya disease” [2]. The predominant feature of the pathology of moyamoya disease is known to be progressive stenosis of the terminal ICA, and the moyamoya vessels are dilated perforating arteries that function as collateral pathways. Moyamoya disease is rare, but important as a cause of cerebral stroke in children, especially in east Asia. Recent studies have expanded our knowledge of the basic and clinical aspects of moyamoya disease, however, the exact pathomechanism of this disease remains unknown.

2. Definitions and diagnosis
In 1997, the research committee published guidelines for the diagnosis of moyamoya disease in English [3]. According to the guidelines, definite moyamoya disease is diagnosed when conventional angiography shows the following findings; stenosis or occlusion in the terminal ICA and/or proximal portion of anterior cerebral artery (ACA) and/or middle cerebral artery (MCA); abnormal vascular networks (moyamoya vessels) in the basal ganglia; and bilateral lesions. Patients with unilateral lesions are diagnosed as having probable moyamoya.
disease. When an underlying cause is found, such as Down syndrome, neurofibromatosis type 1, sickle cell disease, and radiation therapy, a diagnosis of moyamoya syndrome is given.

3. Cerebral angiography and angiographic staging of moyamoya disease

Cerebral angiography is still the gold standard for the diagnosis of moyamoya disease. Moyamoya disease is a progressive cerebrovascular disorder whose vascular changes are divided into the six stages described below [1,4].

Stage 1. Narrowing of terminal ICA. Only terminal ICA stenosis is observed.
Stage 2. Initiation of basal moyamoya. Appearance of moyamoya vessels and dilated main cerebral arteries is observed.
Stage 3. Intensification of moyamoya. Remarkable moyamoya vessels at the base of the brain. The detection of the ACA and MCA is observed.
Stage 4. Minimization of moyamoya. Decrease of moyamoya vessels and defect of the PCA are observed.
Stage 5. Reduction of moyamoya. Further decrease of moyamoya vessels and the absence of all the main cerebral arteries are observed.
Stage 6. Disappearance of moyamoya. Moyamoya vessels disappear and the cerebral blood supply is only from the external carotid arteries.

Moyamoya disease is characterized by the extensive development of pathognomonic collateral pathways in response to steno-occlusive changes in the terminal ICA. The first pathway is known as basal moyamoya, and includes abnormal dilatation of the lenticulostrate and thalamoperforating arteries in the basal ganglia and thalamus. The second pathway involves substantial dilatation of the anterior choroidal and posterior pericallosal arteries. The third pathway is known as ethmoidal moyamoya, which includes abnormal dilatation of the anterior and posterior ethmoidal arteries, mainly from the ophthalmic arteries to the ACA branches. The final pathway is a vascular network in the cranial vault that is responsible for the collateral flow from dural arteries to pial arteries (vault moyamoya). Steno-occlusive changes in the proximal posterior cerebral artery (PCA) are also observed in about 25% of patients with moyamoya disease [5].

Cerebral angiography is useful for assessing the development of collateral pathways through direct or indirect bypasses, which cannot be fully observed on MR angiography (MRA). Effective bypass surgery leads to the disappearance or regression of the collaterals because they are no longer required. Postoperative angiography is recommended at least 3 months after surgery, because collateral pathways require 3–4 months to develop after indirect bypass surgery [6].

4. Epidemiology

The incidence of moyamoya disease is high in countries in east Asia, such as Japan and Korea. In Japan, the annual prevalence and incidence have been estimated to be 3.16–10.5 and 0.35-0.94 per 100,000 [7,8]. The annual incidences in the USA and Europe have been reported to be about 10% of that in Japan [9]. The female to male ratio has been shown to be 1.8–2.2 (female predominance) [7,8]. A bimodal age distribution has been reported for moyamoya disease, i.e., a high peak at 5 years and a low peak at about 40 years [7]. A recent report, however, revealed a highest peak between 45 and 49 years followed by a second peak between 5 and 9 years [8]. This suggests that the incidence of pediatric moyamoya disease has started to decrease [1,8].

The incidence of familial occurrence is high, accounting for as many as 15% of moyamoya patients [10]. 172 familial cases have been reported; including 38 parent–offspring pairs in 16 pedigrees, and 128 sibling pairs in 51 pedigrees [11]. The female to male ratio in familial moyamoya disease is 5.0, which is much higher than that in sporadic cases (1.6). The mean age at onset of familial moyamoya disease (11.8 years) is lower than that in sporadic cases (30.0 years). Among parent–offspring pairs, the age at onset of offspring (7.2 years) is lower than that of parents (30.7 years), suggesting strong association with anticipation in familial moyamoya disease [11].

5. Histopathology

The histopathological findings for the carotid terminations include fibrocellular thickening of the intima, irregular undulation of the internal elastic lamina, and attenuation of the media [12]. Moyamoya vessels have fibrin deposits in their walls, fragmented elastic laminae, attenuated media, and microaneurysms. Collapse of the arterial lumen and subsequent thrombosis can be seen in moyamoya vessels [13], which might be closely associated with the onset of ischemic stroke and hemorrhage.

6. Pathogenesis of moyamoya disease

Infectious etiologies have been proposed based on the presence of increased Epstein–Barr virus DNA and antibodies in patients with moyamoya disease [14]. Bacterial infection of the head and neck might also be implicated in the development of moyamoya disease [15]. An epidemiological study of familial moyamoya disease suggested that moyamoya disease is probably inherited in a polygenic or autosomal dominant manner with low
penetrance [16]. Linkage analysis has revealed multiple genetic loci on chromosomes 3, 6, 8, and 17 [17,18], however, the relevant genes have not been identified so far.

7. Clinical presentations

The clinical features of moyamoya disease differ between children and adults. In contrast to adults, who typically present with subarachnoid or intraparenchymal hemorrhage, children with moyamoya disease usually exhibit recurrent transient ischemic attacks (TIA) or infarction in the territory of the ICA, particularly in the frontal lobe. Typical symptoms are monoparesis, hemiparesis, aphasia, and dysarthria. Headache, seizures, and involuntary movements, such as hemichorea, can be serious symptoms associated with pediatric moyamoya disease. When a precise diagnosis is delayed, slowly progressive mental impairment has also been observed.

Hyperpnea or excitement, such as on blowing on hot noodles, playing a trumpet or crying, may trigger TIA due to hyperventilation-induced reduction of cerebral blood flow. Although the re-build up on EEG (reappearance of slow waves after the end of hyperventilation) is pathognomonic for moyamoya disease, hyperventilation during EEG examination should be avoided when a diagnosis of moyamoya disease is suspected or given, because it can induce iatrogenic TIA or infarction.

8. Moyamoya syndrome

According to the guidelines for the diagnosis of moyamoya disease, cerebrovascular diseases with underlying diseases or conditions should be eliminated [3]. For pediatric neurologists, it is important to know that the same or very similar cerebrovascular changes can be seen in patients with Down syndrome, neurofibromatosis type 1, irradiation of the head, sickle cell disease, gly-
cogen storage disease type 1a, hereditary spherocytosis, tuberculosis meningitis, and human immunodeficiency syndrome, which comprise so called moyamoya syndrome [1,19].

The estimated prevalence of moyamoya syndrome associated with Down syndrome could be as high as one in several hundred [20], i.e., far greater than that of moyamoya disease in Japan (3.16–10.5 in 100,000). When a patient with Down syndrome presents with hemi or monoplegia, moyamoya syndrome should be suspected in addition to cervical myelopathy due to atlantoaxial dislocation, and germinoma in the basal ganglionic region [19].

9. MRI and MRA findings

Cerebral angiography is still the gold standard, however, it is not mandatory for the diagnosis of moyamoya disease when MRI and MRA show typical findings with a more than 1.5 tesla magnet [1]. As the cerebral angiography is invasive and not easy to perform, pediatric neurologists have to be familiar with the findings of moyamoya disease on MRI and MRA, which can be performed in a non-invasive manner.

For the detection of stenosis or occlusion in the terminal ICA, proximal ACA or MCA, MRA with
selective maximum intensity projection (MIP) with its source images, and T2-weighted images, which can show disappearance of flow voids, are useful (Figs. 1 and 2) [1,21,22]. MRA can reveal moyamoya vessels in the basal ganglia and thalamus (Fig. 2). T1- and T2-weighted images are also useful for identifying moyamoya vessels as multiple flow voids in these regions (Fig. 3). For the detection of ischemic lesions, T1- and T2-weighted images, and fluid-attenuated inversion recovery (FLAIR) images are useful for showing chronic infarctions (Fig. 3). Diffusion-weighted images (DWI) can show the acute stage of ischemia as a high signal lesion with reduced diffusion (Fig. 4). T2 shortening (low signal) in the affected subcortical white matter could be observed on T2-weighted images [23]. In moyamoya disease, compensatory pial vessel and medullary vessel dilatation via leptomeningeal anastomosis can be observed on FLAIR or post-contrast T1-weighted images, named the “ivy sign” (Figs. 5 and 6) and “medullary streaks” (Fig. 6), respectively [24,25].

A novel grading system for MRA in moyamoya disease has been proposed [26], based on the severity of the occlusive changes of the ICA, ACA, MCA, and PCA, and the visibility of their distal branches. MRA scores correlate well with the six-stages of cerebral angiography with high sensitivity and specificity. MRA grade 1 correlates with angiography stages 1 and 2, and MRA grades 2, 3, and 4 with angiography stages 3 (mainly), 4 (mainly), and 5 to 6, respectively.

10. Surgical treatment

There are no effective medical therapies for moyamoya disease. Surgical revascularization is thought to improve cerebral perfusion, and to reduce the risk of subsequent stroke in both pediatric and adult patients. In pediatric patients, the incidence of TIA rapidly decreases after surgery [27]. Surgical procedures are classified into three categories, direct bypassing including superficial temporal artery to MCA (STA-MCA) anastomosis, indirect bypassing including encephaloduroarteriosynangiosis (EDAS) and encephalomyosynangiosis (EMS), and combined bypassing [1]. Direct bypassing can be technically challenging in some pediatric patients with cortical arteries of smaller diameter, but can improve cerebral hemodynamics immediately after surgery. Indirect bypass surgery that induces spontaneous angiogenesis between the brain surface and the vascularised donor tissues is technically simple, but requires 3–4 months for the collaterals to develop [6]. Indirect surgery can provide extensive collaterals in almost all pediatric patients, but only around half of adult patients.

11. Conclusion

Moyamoya disease is an important cause of cerebral stroke in children, especially in east Asian countries. For the pediatric neurologist, it is important to be familiar with the clinical manifestations and MRI/MRA findings in moyamoya disease or syndrome to make an early diagnosis leading to a good prognosis. Genetic analysis of familial moyamoya disease might help to determine the pathogenesis in the near future.

Acknowledgments

A part of this study was presented at the 10th Asian & Oceanian Congress of Child Neurology in Daegu, Korea, June 10–13th, 2009.
References